

-

Basic Concepts of NN Training (Weight Optimization) Backpropagation = Backpropagation of errors Gradient descent procedures are generally used where we want to maximize or minimize n-dimensional functions. The gradient is a vector g that is defined for any differentiable point of a function, that points from this point exactly towards the steepest ascent and indicates the gradient in this direction by means of its norm |g|. f(x) $f(x) = x^3 - 2x^2 + 2$ $x_i = x_{i-1} - \epsilon f'(x_{i-1})$ x_i 가 변화가 없을 때까지 위 수식을 반복 -1/0-0.5 0.5 1.0 1.5 2.0 2.5 →결국 gradient 가 가리키는 방향으로 계속해서 parameter 변화 됨 $x_0 = 0.01$ $x_0 = 2$ f(x)f(x)→Local Minimum 에 빠질 수 있음 2.0 1.8 1.6 1.4 1.0 10-05 0.5 1.0 1.5 2.0 1.2 1.4 1.6 1.8 2.0 7

Basic Concepts of NN

Training (Weight Optimization)

 $\theta = \{W^{(2)}, b^{(2)}, W^{(1)}, b^{(1)}\}$

- How to learn the weights??

"Backpropagation Algorithm"

최종 결과물을 얻고	Feed Forward and Prediction
그 결과물과 우리가 원하는 결과물 과의 차이점을 찾은 후	Cost Function
그 차이가 무엇으로 인해 생기는 지	Differentiation (미분)
역으로 내려가면서 추정하여	Back Propagation
새로운 Parameter 값을 배움	Weight Update

6

by the second state of t

W	/hy? Deep Learr	ning			
Why was not old	NN successful? (Jeong	ı, 2015)			
tialization	ocal Minima Computat	ion Power Data			
Pre-Training	Distributed Representation	Initialization Techniques			
Activation Function Understanding ANN Big Data					
	~				
	Deep Learning				

10

Learning Word Representation for NLP

The vast majority of rule-based and statistical NLP work regards words as atomic symbols

> Walk, natural, language, process

In vector space terms, this is a vector with one (1) and a lot of zeroes (0)

> [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]

Dimensionality:

> 20K (speech) – 50K (PTB) – 500K (big vocab) – 3M (Google 1T)

"One-hot" representation

> It is a localist representation

15

14

Learning Word Representation for NLP

For web search,

If user searches for "Seoul motel," we would like to match documents containing "Seoul hotel."

🔹 But

16

Inner product of motel [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0] and hotel [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0] = 0

16

- > Our query and document vectors are orthogonal
- > No natural notion of similarity in a set of one-hot vectors

Could deal with similarity

> Explore a direct approach where vectors encode it

Approaches for Word Embedding Ranking-based projection hidden input output w(t-2) s or w(t-1) Se w(t) or w_c(t) U Shared weights Negative sampling = Word embedding 26 26

34

Approaches for Word Embedding

Loss function:

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{m \le j \le m, \\ j \ne 0}} \log P(w_{t+j}|w_t)$$

- > Let's derive gradient for center word together
- > For one example window and one example outside word:

$$\log p(o|c) = \log \frac{\exp(u_o^T v_c)}{\sum_{w=1}^{V} \exp(u_w^T v_c)}$$

 \succ You then also need the gradient for context words. That's all of the parameters θ here.

36

Approaches for Word Embedding

Calculating all gradients!

- > We went through gradient for each center vector v in a window
- > We also need gradients for outside vectors u
- > Generally, in each window, we will compute updates for all parameters that are being used in that window.
- > For example, window size m = 1, sentence:

"We like learning a lot"

- > First window computes gradients for:
 - Internal vector v_{ke} and external vectors u_W e and u_{barning}

Approximations

* The normalization factor is too computationally expensive.

$$p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w=1}^V \exp(u_w^T v_c)}$$

- Hence, you will implement the skip-gram model with negative sampling
- Main idea: train binary logistic regressions for a true pair (center word and word in its context window) versus a couple of noise pairs (the center word paired with a random word)

41

41

The skip-gram model and negative sampling

Slightly clearer notation:

$$\boldsymbol{J}_{\boldsymbol{t}}(\boldsymbol{\theta}) = \log \boldsymbol{\sigma}(\boldsymbol{u}_{o}^{T}\boldsymbol{v}_{c}) + \sum_{j \sim P(\boldsymbol{w})} \left[\log \boldsymbol{\sigma}\left(-\boldsymbol{u}_{j}^{T}\boldsymbol{v}_{c}\right)\right]$$

- Maximize probability that real outside word appears, minimize prob. that random words appear around center word
- P(w)=U(w)^{3/4}/Z, the unigram distribution U(w) raised to the 3/4 power (We provide this function in the starter code).
- * The power makes less frequent words be sampled more often

43

The skip-gram model and negative sampling

- From paper: "Distributed Representations of Words and Phrases and their Compositionality" (Mikolov et al. 2013)
- Overall objective function: $J(\theta) = \frac{1}{T} \sum_{t=1}^{T} J_t(\theta)$

$$\boldsymbol{J}_{\boldsymbol{t}}(\boldsymbol{\theta}) = \log \boldsymbol{\sigma}(\boldsymbol{u}_{o}^{T}\boldsymbol{v}_{c}) + \sum_{j=1}^{k} \mathbb{E}_{j \sim P(\boldsymbol{w})} [\log \boldsymbol{\sigma}(-\boldsymbol{u}_{j}^{T}\boldsymbol{v}_{c})]$$

- **Where** *k* is the number of negative samples and we use,
- ✤ The sigmoid function! $σ(x) = \frac{1}{1+e^{-x}}$ (we'll become good friends soon)
- So we maximize the probability of two words co-occurring in first log

- -

42

Approaches for Word Embedding

42

- Why not capture cooccurrence counts directly? (Manning, 2017)
 - > 2 options: full document vs. windows
 - Word-document co-occurrence matrix will give general topics (all sports terms will have similar entries) leading to "Latent Semantic Analysis"
 - Instead: Similar to word2vec, use window around each word --> captures both syntactic (POS) and semantic information

Approaches for Word Embedding	
* Window based co-occurrence matrix	
Example corpus:	
 I like deep learning. 	
I like NLP.	
 I enjoy flying. 	

I	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0
				46				

References

- Ronan Collbert, et al. "Natural Language Processing (Almost) from Scratch," Journal of Machine Learning Research, 2011.
- Mikolov, T., et al. "Recurrent Neural Network based Language Model," 2010.
- Mikolov, T., et al., "Distributed Representations of Words and Phrases and their Compositionality," NIPS, 2013.
- Le, Q., Mikolov, T., "Distributed Representations of Sentences and Documents," ICML, 2014.
- Kalchbrenner, N., Grefenstette, E. and Blunsom, P. "A Convolutional Neural Network for Modelling Sentences," ACL, 2014.
- Kim, Y. "Convolutional Neural Networks for Sentence Classification," EMNLP, 2014.
- Al-Rfou, R., Perozzi, B., Skiena, S., "Polyglot: Distributed Word Representations for Multiligual NLP," ACL, 2013.
- Seong, S., "Introduction to Deep Learning," tutorial of NLP, 2015.
- Lee, C., "Word and Phrase Embedding," tutorial of NLP, 2015.
- Manning, C. D., Natural Language Processing with Deep Learning, course (http://web.stanford.edu/class/cs224n/), 2017.
- Kim, S., Simple Pytorch tutorial Zero to All, <u>https://github.com/hunkim/PyTorchZeroToAll</u>, 2017

52

Thank you for your attention!
http://nlplab.skku.edu
고 영 중