
1

Ko, Youngjoong

Sungkyunkwan University

Word Embedding
1. Basic Concepts of Neural Network (NN)

2. Why do we need Deep Learning?

3. Learning Representation for NLP

4. Approaches for Word Embedding
- Ranking-based
- Word2Vec

 - Glove

2

Contents

3

Basic Concepts of NN
v Perceptron v Multilayer Neural Network

4

Basic Concepts of NN

1 2

3 4

2

v Multilayer Neural Network (Jeong, 2015)

5

Basic Concepts of NN
v Training (Weight Optimization)

6

Basic Concepts of NN

v Training (Weight Optimization)

7

Basic Concepts of NN

)

v Training (Activation Functions)

8

Basic Concepts of NN

5 6

7 8

3

v Training (Activation Functions)

v Scoring Functions (Softmax)

9

Basic Concepts of NN
v Why was not old NN successful? (Jeong, 2015)

10

Why? Deep Learning

v Pre-Training
Ø Pre-training으로 NN의 성능이 비약적으로 향상됨

Ø AutoEncoder 계열과 Restricted Boltzmann Machine 계열이 있음

11

Why? Deep Learning
v Pre-Training-Performance

12

Why? Deep Learning

9 10

11 12

4

v Auto Encoder

13

Why? Deep Learning

14

Learning Word Representation for NLP

15

Learning Word Representation for NLP

v The vast majority of rule-based and statistical NLP work
regards words as atomic symbols
Ø Walk, natural, language, process

v In vector space terms, this is a vector with one (1) and a lot of
zeroes (0)
Ø [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]

v Dimensionality:
Ø 20K (speech) – 50K (PTB) – 500K (big vocab) – 3M (Google 1T)

v “One-hot” representation
Ø It is a localist representation

16

Learning Word Representation for NLP

v For web search,
Ø If user searches for “Seoul motel,” we would like to match documents

containing “Seoul hotel.”

v But
Ø Inner product of motel [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0] and
 hotel [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0] = 0
Ø Our query and document vectors are orthogonal
Ø No natural notion of similarity in a set of one-hot vectors

v Could deal with similarity
Ø Explore a direct approach where vectors encode it

13 14

15 16

5

17

Learning Word Representation for NLP

v Continuous representation
Ø Latent Semantic Analysis, Random projection
Ø Latent Dirichlet Allocation, HMM clustering
Ø Distributed Representation (Neural word embedding)

§ Dense vector
§ By adding supervision from other tasks -> improve the representation

§ Get a lot of value by representing a word by means of its neighbors
§ It’s one of the most successful ideas of modern statistical NLP

v Distributed Representation (Jeong, 2015)
Ø DNN이 기존 AI 방법론들에 비해 큰 의미가 있는 것은 실 세계에 있는 실

제 Object를 표현할 때 Symbol에 의존하지 않는다는 점이다.

18

Learning Word Representation for NLP

v Distributed Representation
Ø 유사한 것은 ‘유사하게’ 표현되어야 함
Ø Curse of Dimensionality 극복 가능

19

Learning Word Representation for NLP

20

Learning Word Representation for NLP

17 18

19 20

6

21

Approaches for Word Embedding

v Basic idea of learning neural network word embeddings
Ø Define a model that aims to predict between a center word  and

context words in terms of word vectors

Ø A loss (or cost) function, e.g., = 1 − ( |)

Ø Look at many positions t in a big language corpus

Ø Keep adjusting the vector representations of words to minimize this
loss (or cost)

22

Approaches for Word Embedding

v Predict between every word and its context words!

v Two algorithms
Ø Skip-grams (SG)

§ Predict context words given target

Ø Continuous Bag of Words (CBOW)
§ Predict target word from bag-of-words context

v Two training methods
Ø Negative sampling

23

Approaches for Word Embedding

24

Approaches for Word Embedding
v Good One – Word Representation

Ø We can compare words without any extra knowledge such as word net!

21 22

23 24

7

25

Approaches for Word Embedding
v Neural Network Language Model (Lee, 2015)

Ø Idea
§ A word and its context is a

positive training sample
§ A random word in that same

context ㅡ> negative training
sample

§ Score(positive) > Score(neg.)

Ø Training complexity is high
§ Hidden layer ㅡ> output
§ Softmax in the output layer

ü Negative sampling

26

Approaches for Word Embedding
v Ranking-based

27

Approaches for Word Embedding
v Word2Vec: CBOW, Skip-Gram

Ø Remove the hidden layer ㅡ>
Speedup 1000x
§ Negative sampling
§ Frequent word sampling
§ Multi-thread (no loc)

Ø Continuous Bag-of-words (CBOW)
§ Predicts the current word given the context

Ø Skip-gram
§ Predicts the surrounding words given

the current word
§ CBOW + DropOut / DropConnect

28

Approaches for Word Embedding
v Skip-gram prediction

… turning into banking crises as …
t t+1 t+2t-1t-2

center
word

output
context words

m word window

output
context words

m word window

P(wt+1|wt)
P(wt+2|wt)P(wt-2|wt)

P(wt-1|wt)

25 26

27 28

8

29

Approaches for Word Embedding
v Details of Word2vec (Manning, 2017)

Ø For each word t =1 ... T, predict surrounding words in a window of
“radius” m of every word.

Ø Objective function : Maximize the probability of any context word given
the current center word:

   = ∏ ∏ (|; )

Ø where  represents all variables we will optimize

Negative
Log
Likelihood

J() = - ∑ ∑ log ( | )

30

Approaches for Word Embedding

v The objective function – details

Ø Terminology : loss function = cost function = objective function

Ø Usual loss for probability distribution : Cross-entropy loss

Ø With one-hot  target, the only term left is the negative log
probability of the true class

31

Approaches for Word Embedding

v Cross Entropy Loss (Sung, 2017)
Ø Linear model

Ø Logistic Regression: pass/fail (0/1)

Linear
Hours (x) Points

1 2
2 4
3 6
4 ?

Linear Linear Sigmoid

Hours (x) Points Pass/fail
1 2 0

2 4 0

3 6 1

4 ? ?
32

Approaches for Word Embedding

v Cross Entropy Loss (Sung, 2017)

Linear Linear Sigmoid

y y_predict loss
0 0.2

0 0.8

1 0.1

1 0.9

29 30

31 32

9

33

Approaches for Word Embedding
v Details of Word2Vec

Ø Predict surrounding words in a window of radius m of every word

Ø For p(  the simplest first formulation is

 p(o | c) =  ()∑  ( )
Ø Where o is the outside (or output) word index, c is the center word

index,  and  are “center” and “outside” vectors of indices c and o
Ø Softmax using word c to obtain probability of word o

34

Approaches for Word Embedding

v Skip-gram



V✖1 d✖ V d ✖ 1 W


=
0
0
0
0
1
0
0

0.2
-1.4
0.3
-0.1
0.1
0.5

0.2
-1.4
0.3
-0.1
0.1
0.5

one hot
word
symbol

word

Looks up
column of
word embedding
matrix as
representation
nf center word

Output
word
representation

V ✖ 
W’

0.2
0.3
0.1
-0.1
-0.2
0.1
0.7

softmax
0.01
0.1
0.05
0.01
0.02
0.05
0.7

0
1
0
0
0
0
0

0.2
0.3
0.1
-0.1
-0.2
0.1
0.7

softmax
0.01
0.1
0.05
0.01
0.02
0.05
0.7

0
0
0
0
0
1
0

0.2
0.3
0.1
-0.1
-0.2
0.1
0.7

softmax
0.01
0.1
0.05
0.01
0.02
0.05
0.7

0
0
0
0
0
0
1







Actual
context
words

Softmax = ∑  
✖1
W’=
[]

V✖ 1
P(x|c) =

Softmax() V ✖ 1
Truth

35

Approaches for Word Embedding
v To train the model: Compute all vector gradients!

Ø We often define the set of all parameters in a model in terms of one
long vector 

Ø In our case with d-dimensional vector and V many words:

Ø We then optimize
these parameters

Ø Note: Every word has two vector. Makes it simpler.


.

.

.

.

.

.

 = ∈ 

36

Approaches for Word Embedding
v Loss function:

Ø Let’s derive gradient for center word together
Ø For one example window and one example outside word:

Ø You then also need the gradient for context words. That’s all of the
parameters  here.

J  = -  ∑ ∑ log (|),

log    = log exp()∑ exp( )

33 34

35 36

10

37

Approaches for Word Embedding
v Simple Example of Word Embedding

출처: http: ronxin.github.io/wevi/

38

Approaches for Word Embedding
v Simple Example of Word Embedding

Ø Negative Sampling

v Simple Example of Word Embedding

Ø “I like a delicious cake.”
Ø delicious | cake

39

Approaches for Word Embedding

cake
delicious

cookie

cake
delicious
cookie

x z y

WM1
WM2

010001
0.3 1.4

0.3

1.4

2.2

0.7

1.6

1.7

1
0
0

×
0.30.4

0.3

1.9

0.2

2.7
0
1
0

×= 0.3

1.4

cake
0.3

1.4

w1 w2 ≈delicious= 0.37

4.38

0.54

40

Approaches for Word Embedding
v Calculating all gradients!

Ø We went through gradient for each center vector v in a window
Ø We also need gradients for outside vectors u

Ø Generally, in each window, we will compute updates for all parameters
that are being used in that window.

Ø For example, window size m = 1, sentence:

 “We like learning a lot”

Ø First window computes gradients for:
§ Internal vector  and external vectors   and 

37 38

39 40

11

41

Approximations

v The normalization factor is too computationally expensive.

v Hence, you will implement the skip-gram model with negative
sampling

v Main idea: train binary logistic regressions for a true pair
(center word and word in its context window) versus a couple
of noise pairs (the center word paired with a random word)

 | = exp()∑ exp ( )

42

The skip-gram model and negative sampling

v From paper: “Distributed Representations of Words and
Phrases and their Compositionality” (Mikolov et al. 2013)

v Overall objective function:   =  ∑  

v Where k is the number of negative samples and we use,

v The sigmoid function!   =  
(we’ll become good friends soon)

v So we maximize the probability
of two words co-occurring in first log

  = log   +  ~() log  −


43

The skip-gram model and negative sampling

v Slightly clearer notation:

v Maximize probability that real outside word appears,
minimize prob. that random words appear around center word

v P(w)=U(w)3/4/Z,
the unigram distribution U(w) raised to the 3/4 power
(We provide this function in the starter code).

v The power makes less frequent words be sampled more often

  = log   +  log  −~()

44

Approaches for Word Embedding

v Why not capture cooccurrence counts directly? (Manning,
2017)

Ø 2 options: full document vs. windows

Ø Word-document co-occurrence matrix will give general topics (all
sports terms will have similar entries) leading to “Latent Semantic
Analysis”

Ø Instead: Similar to word2vec, use window around each word ㅡ>
captures both syntactic (POS) and semantic information

41 42

43 44

12

45

Approaches for Word Embedding

v Example: Window based co-occurrence matrix

Ø Window length 1 (more common: 5 – 10)

Ø Symmetric (irrelevant whether left or right context)

Ø Example corpus:

§ I like deep learning.
§ I like NLP.
§ I enjoy flying.

46

Approaches for Word Embedding

v Window based co-occurrence matrix
Ø Example corpus:

§ I like deep learning.
§ I like NLP.
§ I enjoy flying.

counts I like enjoy deep learning NLP flying .

I 0 2 1 0 0 0 0 0

like 2 0 0 1 0 1 0 0

enjoy 1 0 0 0 0 0 1 0

deep 0 1 0 0 1 0 0 0

learning 0 0 0 1 0 0 0 1

NLP 0 1 0 0 0 0 0 1

flying 0 0 1 0 0 0 0 1

. 0 0 0 0 1 1 1 0

47

Approaches for Word Embedding

v Problems with simple co-occurrence vectors

Ø Increase in size with vocabulary

Ø Very high dimensional: require a lot of storage

Ø Subsequent classification models have sparsity issues

ㅡ> Models are less robust

48

Approaches for Word Embedding
v Count based vs direct prediction

LSA, HAL (Lund , Burgeess),

COALS (Rohde et al),

Hellinger-PCA (Lebret,
Collobert)

• Fast training

• Efficient usage of statistics

• Primarily used to capture
word similarity

• Disproportionate importance

 given to large counts

NNLM, HLBL, RNN, Skip-gram

CBOW, (Bengio et al; Collobert,
Weston; Huang et al; Mnih, Hinton;
Mikolov et al;Mnih , Kavukcuoglu)

• Scales with corpus size

• Inefficient usage of statistics

• Generate improved performance

 on other tasks

• Can capture complex patterns

 beyond word similarity

45 46

47 48

13

49

Approaches for Word Embedding

v Combining the best of both worlds: GloVe

Ø Fast training

Ø Scalable to huge corpora

Ø Good performance even with small corpus, and small vectors

  =  ∑ ()(,  − log )

50

Approaches for Word Embedding

v What to do with the two sets of vectors?
Ø We end up with U and V from all the vectors u and v (in columns)

Ø Both capture similar co-occurrence information. It turns out, the best
solution is to simply sum them up:

Ø One of many hyperparameters explored in GloVe: Global Vectors for
Word Representation (Pennington et al. (2014))

 =  + 

51

Approaches for Word Embedding
v Word2Vec 학습파일 포맷

Ø -train
Ø 한 문장 별로 한 라인에 문장 자질로 구성

Ø Tutorial
§ http://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-

words-model.html

52

v Ronan Collbert, et al. “Natural Language Processing (Almost) from Scratch,” Journal of
Machine Learning Research, 2011.

v Mikolov, T., et al. “Recurrent Neural Network based Language Model,” 2010.
v Mikolov, T., et al., “Distributed Representations of Words and Phrases and their

Compositionality,” NIPS, 2013.
v Le, Q., Mikolov, T., “Distributed Representations of Sentences and Documents,” ICML,

2014.
v Kalchbrenner, N., Grefenstette, E. and Blunsom, P. “A Convolutional Neural Network for

Modelling Sentences,” ACL, 2014.
v Kim, Y. “Convolutional Neural Networks for Sentence Classification,” EMNLP, 2014.
v Al-Rfou, R., Perozzi, B., Skiena, S., “Polyglot: Distributed Word Representations for

Multiligual NLP,” ACL, 2013.
v Jeong, S., “Introduction to Deep Learning,” tutorial of NLP, 2015.
v Lee, C., “Word and Phrase Embedding,” tutorial of NLP, 2015.
v Manning, C. D., Natural Language Processing with Deep Learning, course

(http://web.stanford.edu/class/cs224n/), 2017.
v Kim, S., Simple Pytorch tutorial Zero to All, https://github.com/hunkim/PyTorchZeroToAll,

2017

References

49 50

51 52

14

Thank you for your attention!

http://nlplab.skku.edu

고 영 중

53

