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Basic Concepts of NN Basic Concepts of NN
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Basic Concepts of NN

Basic Concepts of NN

+ Multilayer Neural Network (Jeong, 2015)
The single-hidden layer Multi-Layer Perceptron (MLP).
An MLP can be viewed as a logistic regressor, where the input is first transformed

using a learnt non-linear transformation
| Softmax Function |

G

ing Function for top-laysr
o [ faniz Function |
output layer o(z) = G(b® + W2 h(x))

&' ¢ Activation Function
for hidden layer

— ‘,/
hidden layer h(z)|= ®(z) = s(b!V) + W)

I

input layer x

f:RP - RL
fla) = GO + wA(s(b + wiz))),

D is the size of input vector x
L is the size of output vector f{x)

Feed Forward Propagation

% Training (Weight Optimization)
6 = {w pR wit) p()}

- How to learn the weights??

“Backpropagation Algorithm”

1 | Feed Forward and Prediction
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Basic Concepts of NN

+ Training (Weight Optimization)

Backpropagation = Backpropagation of errors

|

Gradient descent procedures are generally used where we want to maximize or
minimize n-dimensional functions.

The gradient is a vector g that is defined for any differentiable point of a function, that
points from this point exactly towards the steepest ascent and indicates the gradient
in this direction by means of its norm |g|.
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Basic Concepts of NN

% Training (Activation Functions)

sigmoid(a) = 1/(1+¢™") .. also called ‘logistic function’, ‘Fermi function’
= Formi Functian with Temperature Parameter
=1 T 1
d
L fa) = fla)(d - 0s
@) = fln)l f(x)
_us
1= f(z) = f(-a). =
ns
2 f(z) = 1+ tanh ('5) . %2
o A . L
Always positive bl = L) 2 L
tanh(a) = (e* — ™) /(e + ™)
Hyperbolic Tangem
'
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Basic Concepts of NN

+« Training (Activation Functions)

Rectified Linear Unit  f(x) = max(0, x)

Smiooth approximation — “softpius” function | 1
S(z) = log(1 +e%) “l /

Fa)=e" (e +1) = 1/(1 ")

+ Scoring Functions (Softmax)

s . — E .
so ftmaz;; (x) = J‘J—Z::x;u.k 3
P(Y = i|x. W, b) = softmaz;(Wx + b) Al class y
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Why? Deep Learning

+ Pre-Training
» Pre-training2 2 NN 80| HI A2 &

» AutoEncoder Hl Z 1} Restricted Boltzmann Machine H Z0| U S

Large Raw Data

Unsupervised l
Learning g 3
Px) » “Pretraining”

Small Tagged Data
Supervised l

Learning P( g | x)
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Why? Deep Learning

< Why was not old NN successful? (Jeong, 2015)

Initialization Computation Power

Pre-Training

Initialization Techniques

{ Activation Function | H Understanding ANN Big Data i

Deep Learning
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Why? Deep Learning

% Pre-Training-Performance

* Regularization hypothesis:
* Representations good for P(x)} | \ ;
are good for P(y|x) f Mt e ditiing.

Witheut pra-training

v

d,ul"“-*

* Optimization hypothesis:
= Unsupervised initializations start
near better local minimum of
supervised training error
* Minima otherwise not
achievable by random
initialization

i

Erhan, Courville, Manzagol,
Vincent, Bengio (JMLR, 2010)
97
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Why? Deep Learning

< Auto Encoder

R

S
% Decoding |
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{ Dat . - 32| F (Zip, MPEG, PNG ... )
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| - Kernel Function in SVM  original space = hyper
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Learning Word Representation for NLP

< The vast majority of rule-based and statistical NLP work
regards words as atomic symbols

» Walk, natural, language, process

2,

“ In vector space terms, this is a vector with one (1) and a lot of
zeroes (0)

»>[00000010000000000]

"’

<+ Dimensionality:
» 20K (speech) — 50K (PTB) — 500K (big vocab) — 3M (Google 1T)

% “One-hot” representation
» ltis a localist representation

Learni Representation for NLP

No more handcraft feature engineering!

* color =‘red

= shape =‘round’

* leafs =‘yes’ Numbers
.

.

dot =‘yes’

- AEHE CAIFE 8 NE SHYNE 222 g
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Learning Word Representation for NLP

15

< For web search,

»> If user searches for “Seoul motel,” we would like to match documents
containing “Seoul hotel.”

+ But
» Inner product of motel [0000001000000000 0] and
hotel [00000000000000100]=0
» Our query and document vectors are orthogonal
» No natural notion of similarity in a set of one-hot vectors

+ Could deal with similarity
» Explore a direct approach where vectors encode it

16




Learning Word Representation for NLP

<+ Continuous representation
» Latent Semantic Analysis, Random projection
» Latent Dirichlet Allocation, HMM clustering
» Distributed Representation (Neural word embedding)

= Dense vector
= By adding supervision from other tasks -> improve the representation

= Get a lot of value by representing a word by means of its neighbors
= It’s one of the most successful ideas of modern statistical NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

17

Learning Word Representation for NLP

+ Distributed Representation
> SANE A2 'FAMSHIT ES 00 &

» Curse of Dimensionality == Jts

2 5 -
\ﬁ ‘w G\
Apple = 001 ﬁ' '9_,‘)
Pear =010 U

Ball = 100

k4

|.. ﬁ'
®©

Distance(Apple ™ Pear) = Distance{Apple ~ Ball)
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Learning Word Representation for NLP

< Distributed Representation (Jeong, 2015)
> DNNO| JIZ Al 2SO0l Hich 2 2010t U= RS A HAH As &
Xl ObjectsS E& & [ Symbol0il 2| E6HAl & =Ch= &OICH

[ Representation ]

Cat

One-Hot Representation l

[0,0,0,1,0,..]

Lot
l Distributed Representation

[34.2,93.2,45.3, .. ]
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Learning Word Representation for NLP

Local Representation

Only one neuron (or very few) is active

Cat

[0,0,0,0,0,0,1,0,0,0,0,0]

- One-Hot Representation
Integer Space
- Very Sparse
- Very high dimensionality

Ex) word = hash to DB Access?
It means ‘integer’ space.

Distributed Representation

many features, each of which can separately each be
active or inactive

-23
1.0
Cat 4.2
53
23

- Word embedding
- Real value space
- Dense
- Low Dimensionality

20
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Approaches for Word Embedding Approaches for Word Embedding

+ Basic idea of learning neural network word embeddings * Predict between every word and its context words!

> Define a model that aims to predict between a center word W; and
context words in terms of word vectors < Two algorithms
» Skip-grams (SG)

> Aloss (or cost) function, e.g., = Predict context words given target
J=1-p(anext |w) . .

» Continuous Bag of Words (CBOW)

. i . = Predict target word from bag-of-words context

> Look at many positions t in a big language corpus

_— ) o . < Two training methods
> Keep adjusting the vector representations of words to minimize this

loss (or cost) » Negative sampling
21 22
21 22
Approaches for Word Embedding Approaches for Word Embedding
r——— ﬁiiiiﬂ ; :::»Z:: 2’? - * Good One — Word Representation
S, ’?‘W’ L » We can compare words without any extra knowledge such as word net!

Neural word embeddings - Visualization

Language Model

Scoring 23
' ; ' 10
has 4.2
Word-Word h ) 53
Relationship Learning 23
Word Embedding vector vector vector =
table table table
Input : Words N
Al st = B0l

Scorel A3, &, BO) HoMe) > score(4fdl 5, B0) HE)
: 4 PI0CIOIEI0] Yl MEO| JWX) Y2 WAL 20| SIS E NN 8 2370
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Approaches for Word Embedding

+ Neural Network Language Model (Lee, 2015)

» ldea

input

prajection

hidden

= A word and its context is a
positive training sample

= A random word in that same
context —> negative training
sample

= Score(positive) > Score(neg.)

» Training complexity is high
= Hidden layer —> output
= Softmax in the output layer

w(t-3)

wit-2)

wit-1)

" Shared weights
= Word embedding

output

Approaches for Word Embedding

< Ranking-based

input

projection

hidden

output

w(t)

v Negative sampling

25
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Approaches for Word Embedding

% Word2Vec: CBOW, Skip-Gram

» Remove the hidden layer —>
Speedup 1000x

= Negative sampling
= Frequent word sampling
= Multi-thread (no loc)

» Continuous Bag-of-words (CBOW) :
= Predicts the current word given the context

» Skip-gram
= Predicts the surrounding words given
the current word

= CBOW + DropOut / DropConnect

27

Input Bropoction

wit-Z)

sUM
wit-1)

Al

w1}
Shared
weights
wit+2)

input projection

output

'
i

output

12
4| ey

£ 4| Wy

wi | 3 |

o | wien)

N wen

27

wi(t-2) y

v | [ R

u
=1/, l
w(t) or w(t) u

— Shared weights
= Word embedding

Negative sampling
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Approaches for Word Embedding

« Skip-gram prediction

P(w,,,|w,)
P(w,,;|w,)

... turning into banking crises as ...

P(w,,|w,)
P(w 4| wy)

t-2 t-1 t t+1 t+2
t
output center  output

context words word context words

28
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Approaches for Word Embedding Approaches for Word Embedding

+ Details of Word2vec (Manning, 2017) < The objective function — details

» For each word t =1 ... T, predict surrounding words in a window of

P » Terminology : loss function = cost function = objective function
radius” m of every word.

» Objective function : Maximize the probability of any context word given

the current center word: » Usual loss for probability distribution : Cross-entropy loss
J(0) = TMi=1 [omejem PWes jlwe; 6) > With one-hot w:.; target, the only term left is the negative Jog
Jj#0 probability of the true class
Negative _lar
Log J(o) = T Yi=12-msjsm 108 P(Weyj | W)
Likelihood j#0

» where 6 represents all variables we will optimize

29 30
29 30
Approaches for Word Embedding Approaches for Word Embedding
« Cross Entropy Loss (Sung, 2017) + Cross Entropy Loss (Sung, 2017)
» Linear model
. I —» Linear —P?} XL —» Linear — Sigmoid —b?}
XL —> Linear —Yy 1 2
1
z “ g=z*w+b U(z):l—c*8
& 2 j=c(z*xw+b)
4 ?
1 N 1 N
loss = — Un — ¥n, <] loss = —— Yo log 1—y,)log(l —gn
» Logistic Regression: pass/fail (0/1) N NZ:LU i 'Vnzflj Sh [l bl
I —> Linear —>’a —p L —P Linear —P |Sigmoid —p tj y_predict loss
0 0.2
0 0.8
1 2 0 1 01
2 4 0 1 0.9
3 6 1
4 ? ? =
31 32

31 32



Approaches for Word Embedding Approaches for Word Embedding

« Details of Word2Vec :
% Skip-gram v X1 VX1
W= P(x|c)= VX1  Softmax
T Trutl x
> Predict surrounding words in a window of radius m of every word vV Xd [u;:”] Sof t":)”;("lvﬂ) rzh b=t
x x x 03| softmax | 0.1 0 ;e
VX1 4dXV d 1 “o ] 01 0.05] 0
> For p(weyj|w;) the simplest first formulation is 01 0.01 01 We_3
-0.2 0.02] 0
; v al e
- exp (UoVc) .7 .7
0/c0)=g——F—
Pe/9 =1 e (whve) 0 0.2 0.01 0
0 0.3| softmax | 0.1 1
0 01| ___, |005 0
» Where ois the outside (or output) word index, cis the center word 0 01 0.01 0| We-2
: « " « sy - 1 -0.2 0.02 0 AN
index, v, and u, are “center” and “outside” vectors of indices cand o 0 0.1 0.05 0
0 07 07|+ 0 Actual
N s context
> Softmax using word cto obtain probability of word o 021 001 0 words
o P Y one hot Looks up o3 softmazx o v 4
word  column of Va 01 oo of Wit
symbol word embedding Output 0.2 0.02 0
t matrix as wo:g 3@ %0; -« (1)
word  representation representation ' '
33 nf center word 34
33 34
Approaches for Word Embedding Approaches for Word Embedding
+ To train the model: Compute all vector gradients! % Loss function:

» We often define the set of all parameters in a model in terms of one
long vector 6

1
J(O) =- ;Z?ﬂ Z—mstm, log P(Wt+j|Wt)

» In our case with d-dimensional vector and V many words:

Jj#0
Ga \ N ) ;. :
» Let’s derive gradient for center word together
» For one example window and one example outside word:
. T
exp(uovc)
o= |2 € R24V logp(ole) =logeg—————F—
Zw:l exp(uwvc)
» We then optimize
these parameters
. » You then also need the gradient for context words. That’s all of the
Usera parameters 6 here.
J

» Note: Every word has two vectoslé Makes it simpler. %
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Approaches for Word Embedding

“ Simple Example of Word Embedding

« O @ ronungithubic T = L

wevi: word embedding visual inspector

B

veed fo ke ut

his toc! - Sour

Control Pane! Neurons

Config

[hidden_size™5,randam_state” 1 "leami
ng_rate"0.2}

Training dala (contexilargel) i - 04 P ® o

eatjapple eatjorange.oatjrice drinkjuice,
rinkjik drink|watef.
[uice,rice|milk.
crink

Update and Restan L@, { “
Update Leaming Rate e (Y ) &=

Z77: http: ronxin.github.io/wevi/

geljuice,appie]

ik water|drink juice]
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Approaches for Word Embedding

% Simple Example of Word Embedding

> “I'like a delicious cake.”
. - WM2
> delicious | cake WM1

cake© o O cake
delicious> ° delicious

cookie© 03] 14 O cookie

[7[0l0] x = =z yol7]0
cake 2 delicious

wl 03|02
03 : : 0.3 0.37 m
X m — > |:> 19]27)| x| = |~
m . 04|03 0.54 m
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Approaches for Word Embedding

++ Simple Example of Word Embedding

Weight Matrices Veclors

» Negative Sampling

38
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Approaches for Word Embedding

% Calculating all gradients!

» We went through gradient for each center vector vin a window
» We also need gradients for outside vectors u

» Generally, in each window, we will compute updates for all parameters
that are being used in that window.
» For example, window size m = 1, sentence:

“We like learning a lot”

» First window computes gradients for:

= Internal vector v, and external vectors uy and Upgmig

40
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Approximations The skip-gram model and negative sampling

« The normalization factor is too computationally expensive.

o

» From paper: “Distributed Representations of Words and
Phrases and their Compositionality” (Mikolov et al. 2013)

RS

exp(u(T,vc) % Overall objective function: J(0) = %Z{:llt(e)

pllo)= og————F—<
K/:l exp(ulv.)

K
J:(8) = loga(ulv,) + Z Ejpw)|logo(—u/v.)]
=1

< Hence, you will implement the skip-gram model with negative

2

*» Where k is the number of negative samples and we use,

sampling :
’ . . . _ 1
« Main idea: train binary logistic regressions for a true pair % The sigmoid function! ¢(x) = 1+eX
(center word and word in its context window) versus a couple (we’ll become good friends soon) 05
of noise pairs (the center word paired with a random word) < So we maximize the probability d

of two words co-occurring in first log

41 42
41 42
The skip-gram model and negative sampling Approaches for Word Embedding
<+ Slightly clearer notation: < Why not capture cooccurrence counts directly? (Manning,
2017)
— T T
J:(8) = loga(uov,) + Z [log 0’( U UC)] > 2 options: full document vs. windows
j~P(w)
5 L. . i > Word-document co-occurrence matrix will give general topics (all
< Maximize probability that real outside word appears, sports terms will have similar entries) leading to “Latent Semantic
minimize prob. that random words appear around center word Analysis”

< P(w)=U(w)34/Z,
the unigram d'_St"bUt'?n U.(W) raised to the 3/4 power > Instead: Similar to word2vec, use window around each word —>
(We provide this function in the starter code). captures both syntactic (POS) and semantic information

< The power makes less frequent words be sampled more often

43 44
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Approaches for Word Embedding

< Example: Window based co-occurrence matrix
» Window length 1 (more common: 5 — 10)
» Symmetric (irrelevant whether left or right context)

» Example corpus:
= | like deep learning.

= | like NLP.
= | enjoy flying.

45
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Approaches for Word Embedding

< Problems with simple co-occurrence vectors

» Increase in size with vocabulary
» Very high dimensional: require a lot of storage

» Subsequent classification models have sparsity issues

—> Models are less robust

47
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Approaches for Word Embedding

+ Window based co-occurrence matrix
» Example corpus:
= | like deep learning.
= |like NLP.
= | enjoy flying.

| 0 2 1 0 0 0 0 0
like 2 0 0 1 0 1 0 0
enjoy 1 0 0 0 0 0 1 0
deep 0 1 0 0 1 0 0 0
learning 0 0 0 1 0 0 0 1
NLP 0 1 0 0 0 0 0 1
flying 0 0 1 0 0 0 0 1

0 0 0 0 1 1 1 0
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Approaches for Word Embedding

< Count based vs direct prediction

ﬁA, HAL (Lund , Burgeess),\
NNLM, HLBL, RNN, Skip-gram

COALS (Rohde et al),
. CBOW, (Bengio et al; Collobert,
Hellinger-PCA (Lebret, Weston; Huang et al; Mnih, Hinton;
Collobert) Mikolov et al;Mnih , Kavukcuoglu)

* Fast training * Scales with corpus size
+ Efficient usage of statistics « Inefficient usage of statistics
+ Primarily used to capture « Generate improved performance
word similarity
on other tasks
» Disproportionate importance
 Can capture complex patterns

given to large counts
\ J \\beyond word similarity J
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Approaches for Word Embedding

+ Combining the best of both worlds: GloVe

JO) =3 281 f (P ) (uf vj — log Py )?

» Fast training

» Scalable to huge corpora

» Good performance even with small corpus, and small vectors

49
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Approaches for Word Embedding

< Word2Vec &S IH o

AZ86 2/ A712 /0 /i A4/ e 2/ £/ E/W6 o738 A1Re e /0 S/ £/00 £323 W B/ 22
/R S/ LA A /0§ SR S 22 S/ &/ B/ AR STRbME TG o]/ 2V A/ £/ G /T
ACk7Hme 20 08 S/ el e 77/ S8/ AU/ SAME 7 e Fame o Sr 5

Sel/me L UIEkG 71 /e o0 /0% <l /G 7h0S /5 B AR §/K EU/EF LS

shbe o)/e Z2/e S FEme S/ R SARM A 290G o /i AU A/ M £/ B £/ 7] Eme dems

» Tutorial

= http://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-
words-model.html
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Approaches for Word Embedding

+ What to do with the two sets of vectors?
» We end up with Uand Vfrom all the vectors uand v (in columns)

» Both capture similar co-occurrence information. It turns out, the best
solution is to simply sum them up:

Xfiflal =U+V

» One of many hyperparameters explored in GloVe: Global Vectors for
Word Representation (Pennington et al. (2014))
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Thank you for your attention!

http://nlplab.skku.edu
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